Predicate Viability and Operator Collapse in the
UNNS Framework

1 Introduction

Mathematical practice routinely distinguishes between questions that are
answered, questions that are open, and questions that are undecidable within
a given axiomatic system. However, a fourth category is often left implicit:
questions whose predicates are applied to structures for which the predicates
themselves are not structurally admissible.

Classical number theory, for example, treats all natural numbers as equally
eligible for arithmetical predicates such as divisibility or primality. When
confronted with extreme but finitely defined quantities—such as TREE(3)
or Graham’s number—this treatment leads to statements of the form “the
answer exists but is unknowable in principle”. Such statements conflate epis-
temic limitation with structural applicability.

The UNNS framework approaches this issue from a different direction.
Rather than asking whether a predicate can be computed or proven, it asks
whether the predicate is meaningfully applicable to the structure in question.
This determination is made structurally, by analyzing how recursive objects
behave under successive regimes of generability, internal consistency, and
closure.

The central claim of this paper is that predicate applicability is not
universal. Certain predicates presuppose structural invariants that do not
survive projection and collapse. When these invariants fail to persist, the
predicates are not merely undecidable or unknown, but structurally non-
applicable.

To formalize this distinction, we introduce the notion of predicate viabil-
ity. A predicate is viable for a given structure if and only if the structural
information required for its evaluation survives the progression through the
® — ¥ — 7 regimes and remains invariant under collapse. Failure of viabil-
ity is not a limitation of computation, proof, or observation; it is a property
of the structure itself under admissible projection.



This paper develops a minimal axiomatic framework for predicate viabil-
ity and applies it to canonical examples. In particular, we show that while
TREE(3) is finitely defined and mathematically valid, it fails to admit the
structural invariants required for primality to be applicable. Accordingly, the
primality predicate is non-viable for TREE(3) within the UNNS framework.

The analysis deliberately avoids claims about truth, existence, or empir-
ical observability. As in prior UNNS work, the distinction between intrinsic
structure and admissible description is maintained throughout. The results
presented here concern the conditions under which statements about struc-
tures are meaningful, not the ontological status of the structures themselves.

The remainder of the paper is organized as follows. Section 2 introduces
the UNNS structural regimes and the notions of W-stable reduction, admissi-
ble projection, and 7-level invariance. Section 3 states the predicate viability
axiom and derives its immediate consequences. Section 4 applies the frame-
work to representative examples, including TREE(3). Section 5 discusses
the relationship between non-viability, undecidability, and classical notions
of mathematical ignorance.

2 Operator Regimes and Structural Admissibility

This section introduces the minimal formal apparatus required to state pred-
icate viability within the UNNS framework. The goal is not to exhaustively
characterize recursive structure, but to specify the conditions under which
predicates may be meaningfully applied to mathematical objects under pro-
jection and collapse.

Throughout, we distinguish structural regimes from operators. The sym-
bols @, ¥, and 7 label successive regimes of organization of recursive struc-
ture. They do not denote actions performed on objects, but rather stages
at which different forms of structural coherence may or may not persist.
Operator XII (Collapse) acts subsequently as a destructive filter and is not
identified with any of these regimes.

2.1 Structural Regimes

Definition 1 (Structural Regimes). Let X be a recursive structure. The
UNNS framework distinguishes three structural regimes:

o & (Generative Regime): the regime of finite symbolic or combinatorial
generability. A structure is ®-admissible if it is specified by a finite
rule or description.



o U (Structural Regime): the regime of relational consistency. A struc-
ture is W-admissible if it admits stable reductions, symmetries, or re-
lational descriptions that preserve its identity under refinement.

e 7 (Closure Regime): the regime of irreducible closure. A structure
is 7-admissible if it exhibits invariant structure that persists under
admissible projection and collapse.

Regime admissibility is monotone: failure at any regime prevents admis-
sibility at subsequent regimes.

The collapse operator (Operator XII), introduced later, acts only after
regime progression and does not constitute an additional regime.

2.2 W-Stable Reductions

Definition 2 (¥-Stable Reduction). Let X be a ®-admissible structure. A
reduction
p: X = X'

is called W-stable if it satisfies the following conditions:

1. Termination: the reduction completes in finitely many steps.

2. Invariant Preservation: there exists a structural invariant I such that

3. Stabilization: repeated application converges, i.e. there exists n such
that
P(X) = pI(X).

A structure is W-admissible if it admits at least one W-stable reduction.

Examples. Typical examples of W-stable reductions include:

e prime factorization of finite integers, preserving multiplicative struc-
ture;

e continued fraction expansion of quadratic irrationals, preserving ap-
proximation class;

e symmetry quotients in geometry, preserving relational identity;



e modular reduction for objects with intrinsic periodic structure.

Structures that admit no such reduction lack analyzable internal organi-
zation at the W-regime.

2.3 Admissible Projections

Definition 3 (Admissible Projection). Let X be a W-admissible structure.
A projection R
m: X =X

is called admissible if it satisfies:

1. Coarse-Graining: m reduces resolution while preserving structural iden-
tity.

2. Interaction Preservation: for any admissible binary operation @,
m(z®y) ~m(x) S(y),
where ~ denotes structural equivalence.
3. Stability: small perturbations of X do not destroy the projected struc-
ture relevant to predicate evaluation.
Examples. Admissible projections include:
e digit truncation preserving order of magnitude;
e modular projection preserving residue classes;
e sampling or discretization preserving frequency or relational content.

Projections that destroy the structural features required for predicate
evaluation are not admissible.

2.4 7-Level Invariants

Definition 4 (7-Invariant). Let X be a W-admissible structure. A structural
invariant I(X) is called 7-level if:

1. Projection Stability: 1(X) is preserved under all admissible projections
.



2. Interaction Meaningfulness: I participates nontrivially in the evalua-
tion of one or more predicates.

3. Reduced Determinability: I(X) can be determined from w(X) for ad-
missible projections.

A structure admits 7-closure if it possesses at least one 7-level invariant.

Examples. Typical 7-level invariants include:
e parity of integers (stable under modulo-2 projection);
e sign and order class (stable under coarse magnitude projection);

e closure constraints such as v/2, e, or 7 in their respective regimes.

2.5 Collapse and Predicate Admissibility

Operator XII (Collapse) acts as a destructive filter eliminating structures
that fail to maintain 7-closure. It does not generate invariants, but reveals
those that persist by eliminating all others.

Predicates whose evaluation presupposes 7-level invariants are admissi-
ble only for structures that survive collapse. This principle underlies the
predicate viability axiom introduced in the next section.

This separation between intrinsic structure and admissible description
parallels the distinction between 7-closure and empirical observability estab-
lished in the 7-closure observability framework, where failure of detectability
constrains permissible statements without bearing on substrate validity.

3 Predicate Viability Axiomatics

We now formalize the criterion governing when a predicate may be mean-
ingfully applied to a recursive structure within the UNNS framework. The
guiding principle is that predicates are not universally applicable; their ad-
missibility depends on the survival of specific structural invariants through
the UNNS regime progression and collapse.

Throughout this section, predicates are treated as abstract evaluative
mappings rather than as computational procedures. No assumption is made
regarding decidability, efficiency, or provability.



3.1 Predicate Viability

Axiom 1 (Predicate Viability under 7-Closure). Let X be a recursive struc-
ture admissible at the ®-regime. A predicate P is said to be viable for X if
and only if the evaluation of P depends exclusively on structural invariants
that persist through the ® — U — 7 regime progression and remain invariant
under the action of Operator XII (Collapse).

If X fails to admit T-closure, then any predicate whose evaluation pre-
supposes T-level invariance is not admissible for X.

This axiom does not assert the truth or falsity of predicates. It specifies
the conditions under which predicates are structurally admissible.

3.2 Monotonicity of Regime Failure

Lemma 1 (Operator Monotonicity). Let X be a recursive structure. If X
fails to be admissible at some regime R € {®, ¥, 7}, then X is inadmissible
at all subsequent regimes.

Proof. By definition, W-admissibility presupposes ®-admissibility, and 7-
admissibility presupposes W-admissibility. Failure at any regime eliminates
the structural prerequisites required for admissibility at later regimes. O

This monotonicity ensures that predicate failure may be localized to the
earliest regime at which the necessary structure collapses.

3.3 Non-Viability versus Undecidability

Predicate non-viability must be distinguished from classical notions of un-
decidability.
A predicate may be:

o Viable but undecided, when the predicate is structurally admissible but
its truth value is not known;

e Undecidable, when the predicate is admissible but unresolvable within
a given formal system;

e Non-viable, when the predicate fails to be structurally admissible due
to regime collapse.



Undecidability reflects limitations of formal systems. Non-viability re-
flects structural inapplicability under projection and collapse. These notions
are logically independent.

3.4 Scope of the Axiom

The predicate viability axiom does not eliminate mathematical uncertainty.
It excludes only predicates whose applicability presupposes invariants that
do not survive the UNNS regime progression.

In particular, the framework permits:

e open problems with well-defined predicates;
e undecidable but meaningful questions;
e context-dependent predicates whose viability depends on projection.

The axiom therefore refines, rather than replaces, classical classifications
of mathematical questions.

3.5 Relation to Observability

The distinction between predicate viability and predicate evaluation paral-
lels the distinction between intrinsic 7-closure and empirical observability
established in the 7-closure observability framework. In both cases, failure
constrains admissible statements without bearing on the existence or internal
consistency of the underlying structure.

4 Worked Examples

We now apply the predicate viability framework to representative mathemat-
ical objects. The purpose of these examples is not to exhaustively classify
mathematical structures, but to illustrate the distinct modes of predicate
success and failure under the & — ¥ — 7 regime progression.

In particular, we contrast:

e finite but extreme combinatorial quantities,
e finitely defined but structurally opaque numbers,

e algebraic quantities admitting stable closure.



4.1 Summary Table

Table 1 summarizes the regime admissibility and predicate viability outcomes
for the examples considered in this section.

Object [
TREE(3) v
Graham’s number G v
V2 v

Predicate Outcome

Primality non-viable
Primality non-viable

<X X |2

X
X
v Rationality viable

Failure at a regime indicates structural inadmissibility, not epistemic
limitation.

4.2 Example 1: TREE(3)

The quantity TREE(3) arises from a finite combinatorial game definition
and is a well-defined natural number. Its magnitude exceeds that of any
quantity encountered in conventional mathematics, but its definition is finite
and unambiguous.

Regime Analysis.

e d-admissibility. TREE(3) is generated by a finite symbolic rule and
is therefore admissible at the ®-regime.

e U-failure. No W-stable reduction preserving divisor interaction is
available. In particular, no terminating reduction exists that preserves
multiplicative structure or yields a stable relational decomposition.

o 7-failure. Since V-admissibility fails, no invariant structure persists
under admissible projection and collapse. Consequently, TREE(3)
does not admit 7-closure.

Predicate Consequence. The predicate of primality presupposes 7-level
invariance of divisor structure. Since such invariants do not survive collapse
for TREE(3), the primality predicate is not admissible. This failure reflects
structural non-viability rather than ignorance or infeasibility.



4.3 Example 2: Graham’s Number

Graham’s number G is defined by a finite expression using Knuth’s up-arrow
notation. Like TREE(3), it is a legitimate natural number whose magnitude
vastly exceeds practical representation.

Regime Analysis.

e d-admissibility. Graham’s number is specified by a finite recursive
description and is therefore admissible at the ®-regime.

e WU-failure. Despite its finite definition, G admits no ¥-stable reduction
preserving arithmetic interaction. There exists no relational decompo-
sition, symmetry quotient, or terminating reduction stabilizing under
iteration.

e 7-failure. In the absence of W-stability, admissible projections elimi-
nate all structure required for arithmetic predicates. No 7-level invari-
ant persists.

Predicate Consequence. As with TREE(3), the primality predicate is
not viable for Graham’s number. The framework therefore classifies primal-
ity questions about G as structurally inadmissible rather than undecidable.

This demonstrates that extreme magnitude alone is not the determining
factor; the failure arises from the absence of analyzable structure.

4.4 Example 3: /2

The quantity v/2 is defined as the positive solution to 22 = 2 and represents
a paradigmatic algebraic irrational.

Regime Analysis.

e ®-admissibility. /2 is finitely specified via a polynomial equation
and is admissible at the ®-regime.

e U-admissibility. /2 admits stable relational structure, including its
periodic continued fraction expansion. These reductions terminate in
a stable equivalence class.

e 7-admissibility. The invariant distinguishing rational from irrational
quantities persists under admissible projections. The irrationality of
V/2 survives coarse-graining and collapse.



Predicate Consequence. The predicate “is rational” is viable for /2.
Accordingly, the statement “y/2 is irrational” is meaningful and evaluable
within the UNNS framework.

This example demonstrates that the framework preserves classical math-
ematical judgments when the required structural invariants survive.

4.5 Interpretive Summary

These examples illustrate three distinct outcomes:

e P-admissible but ¥- and 7-inaccessible structures, for which arithmetic
predicates are non-viable;

e finite definability does not guarantee predicate applicability;
e classical results are recovered when structural invariants persist.

Predicate non-viability thus identifies a structural boundary on meaning-
ful mathematical statements, distinct from undecidability or lack of proof.

5 Classical and UNNS Classifications of Mathemat-
ical Questions

Classical mathematics distinguishes primarily between questions that are
resolved, open, or undecidable within a given formal system. While effec-
tive for many purposes, this classification conflates distinct structural failure
modes. In particular, it does not distinguish between predicates that are
meaningful but unresolved and predicates that are structurally inapplicable
to the objects under consideration.

The UNNS framework introduces an additional layer of classification by
separating predicate viability from predicate evaluation. This section con-
trasts the classical and UNNS perspectives and clarifies the distinction be-
tween non-viability and undecidability.

5.1 Classical versus UNNS Perspective

Table 2 contrasts how representative objects and questions are treated in
classical mathematics and under the UNNS predicate viability framework.
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Object / Question Classical Status UNNS Classification

17 prime? Resolved Predicate viable, evaluated
TREE(3) prime? Unknown in principle Predicate non-viable

Graham’s number prime? Unknown in principle Predicate non-viable

V2 rational? Resolved Predicate viable, evaluated
Goldbach conjecture Open Predicate viable, unevaluated
Continuum hypothesis Undecidable (ZFC) Predicate viable, framework-relative

In the UNNS framework, “unknown in principle” is not a primitive cate-
gory. Questions previously grouped under this label are separated according
to whether their predicates are structurally admissible.

5.2 Non-Viability versus Undecidability

Predicate non-viability must be sharply distinguished from undecidability.

Undecidability. A predicate is undecidable when it is structurally admis-
sible but cannot be resolved within a given formal system. Undecidability
reflects limitations of axiomatic frameworks and proof systems.

Non-Viability. A predicate is non-viable when the structural invariants
required for its evaluation do not survive the ® — ¥ — 7 regime progression.
In this case, the predicate is not meaningfully applicable, independent of any
formal system.

These notions are logically independent. A predicate may be viable yet
undecidable, or non-viable without invoking any formal incompleteness.

5.3 Classification of Question Types

The distinction may be summarized as follows:

Question Type Classical View UNNS View

Resolved Answer known Viable, evaluated

Open Answer unknown Viable, unevaluated

Undecidable No proof in system Viable, unresolvable in framework
Non-viable Not distinguished  Predicate structurally inadmissible
Category error Informal notion Predicate inapplicable by type
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Classical mathematics typically treats non-viable predicates as extreme
instances of open or undecidable questions. UNNS instead identifies them
as failures of structural applicability.

5.4 Implications for Mathematical Practice

The introduction of predicate viability refines, rather than replaces, classical
mathematical reasoning. It preserves existing results where structural invari-
ants persist, while preventing misclassification of questions whose predicates
do not survive collapse.

In particular, the framework:

e preserves open problems with meaningful predicates;
e respects undecidability results without reinterpretation;

e excludes structurally inapplicable predicates without appeal to epis-
temic limitation.

The distinction between non-viability and undecidability therefore clar-
ifies the logical status of questions involving extreme or opaque structures,
without altering the foundations of classical mathematics.

6 Physical Predicate Viability

The predicate viability framework developed above applies not only to math-
ematical structures, but also to physical quantities insofar as they are rep-
resented by mathematical structures subject to projection, interaction, and
collapse.

In physical theories, predicates typically correspond to statements of ob-
servability, measurability, or dynamical relevance. As in the mathematical
case, such predicates presuppose the persistence of specific structural invari-
ants. The UNNS framework makes this dependence explicit.

6.1 Observability as Predicate Viability

In physical contexts, a predicate is viable if and only if the quantity it refers
to admits 7-level invariants under admissible physical projection. Here, ad-
missible projections correspond to experimentally realizable coarse-grainings,
such as finite resolution, noise, or indirect measurement.
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This aligns with the 7-closure observability framework, where observ-
ability is not identified with existence, but with the persistence of invariant
structure under collapse.

[Physical Predicate Viability| A physical predicate referring to a quantity
@ is viable if and only if the structural representation of () admits 7-closure
under admissible physical projections.

Failure of viability indicates that no meaningful physical statement can
be formed, independent of experimental limitation.

6.2 Representative Physical Examples

We illustrate the correspondence using representative physical quantities.

Position. The position of a particle admits stable projection under finite
spatial resolution. Relational structure is preserved under coarse-graining,
and positional predicates remain viable. Accordingly, position is a 7-viable
observable.

Momentum. Momentum admits dual representation via Fourier struc-
ture. Despite projection into finite bandwidth or resolution, invariant rela-
tional structure persists. Momentum predicates are therefore T-viable.

Weinberg Angle. The Weinberg angle emerges as a stable relational in-
variant across renormalization scales. Its persistence under projection and
effective field descriptions indicates 7-closure. Predicates referring to its
value are viable and meaningful. This behavior has been explicitly tested
within the UNNS Chamber system.

Planck-Scale Couplings. Quantities defined only at trans-Planckian scales
do not admit admissible projection into experimentally accessible regimes.
No 7-level invariant structure persists. Predicates referring to precise values
of such quantities are therefore non-viable within the framework.

6.3 Connection to the UNNS Chamber System

The UNNS Chamber system provides an experimental and computational
environment for testing predicate viability across regimes.
In particular:
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e Chamber XIII examines the 7-viability of electroweak parameters, in-
cluding the Weinberg angle.

e Chamber XXXII investigates T-closure through spectral observability
gates.

e Chambers XIX and XX explore the emergence of Maxwell-type struc-
ture under recursive projection.

These chambers do not establish physical truth. They test whether the
structural invariants required for predicate viability persist under admissible
collapse.

6.4 Interpretive Boundary

The extension of predicate viability to physical quantities does not assert
that non-viable predicates correspond to non-existent entities. As in the
mathematical case, non-viability reflects structural inadmissibility, not on-
tological absence.

This preserves the separation between the UNNS Substrate, in which
physical structure may exist, and the UNNS Framework, which governs
which statements about that structure are meaningful.

6.5 Summary

Physical predicate viability parallels mathematical predicate viability. In
both domains, meaningful statements require the persistence of invariant
structure under projection and collapse. UNNS therefore provides a unified
criterion for distinguishing meaningful physical observables from structurally
inadmissible predicates, without appeal to epistemic or experimental limita-
tion.

Remark 1 (Framework—Substrate Separation). The UNNS Substrate denotes
the underlying recursive structural domain in which generability, consis-
tency, and closure properties are defined intrinsically. The UNNS Frame-
work is the formal apparatus—operators, regimes, axioms, and admissibility
criteria—used to articulate which statements about substrate-level struc-
tures are meaningful under projection and collapse.
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Results established within the UNNS Framework do not assert the pres-
ence or absence of properties within the Substrate itself. Rather, they deter-
mine the viability of predicates under the action of the & — ¥ — 7 regime
progression and the destructive filtering of Operator XII.

Accordingly, the conclusion that primality is non-viable for TREE(3) is a
framework-level statement concerning predicate admissibility after collapse.
It does not constitute an ontological claim about the internal structure of
the Substrate, nor does it appeal to computational, epistemic, or observa-
tional limitation. This distinction parallels the separation between intrinsic
7-closure and empirical observability established in the 7-closure observ-
ability framework, where the failure of detectability constrains admissible
statements without bearing on substrate validity.

X
|

[l -- fail --> non-viable
|

[l -- fail --> non-viable
|

[t] -- fail --> non-viable

predicate viable

Figure 1: Operator cascade determining predicate viability. Failure at any
regime renders predicates requiring subsequent structure inadmissible.

TREE (3)
I

T

primality: non-viable

Figure 2: Regime trajectory for TREE(3). Structural collapse at the W
regime prevents 7-closure and renders primality inadmissible.
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Figure 3: Schematic viability landscape. Predicate applicability depends
jointly on object structure and predicate requirements.

7 Conclusion and Discussion

This paper introduced a structural criterion for determining when predicates
are meaningfully applicable to mathematical and physical structures. By
separating predicate viability from predicate evaluation, the UNNS frame-
work distinguishes between questions that are unresolved, undecidable, and
structurally inadmissible.

The central contribution is the identification of non-viability as a distinct
failure mode. Unlike undecidability, which reflects limitations of formal sys-
tems, non-viability arises from the absence of invariant structure required
for predicate application. This distinction resolves long-standing ambigui-
ties surrounding extreme but finitely defined objects, such as TREE(3) and
Graham’s number, without appealing to epistemic or computational limits.

The worked examples demonstrate that UNNS preserves classical math-
ematical judgments whenever structural invariants persist. Well-established
results, such as the irrationality of v/2, remain intact. Open problems with
meaningful predicates, such as Goldbach’s conjecture, are unaffected. Only
predicates whose structural prerequisites fail under the ® — ¥ — 7 regime
progression are excluded.

The extension to physical quantities shows that the same criterion gov-
erns observability. Physical predicates are viable precisely when invariant
structure survives admissible projection and collapse. This provides a uni-
fied account of mathematical and physical meaningfulness while maintaining
a strict separation between the UNNS Substrate and the UNNS Framework.

Several directions remain open. A systematic classification of predicates
by their regime requirements would further clarify the boundary between
viable and non-viable questions. Connections to complexity theory, while
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suggestive, require careful formulation to avoid conflation of structural and
computational notions. Finally, the Chamber system offers a practical envi-
ronment for testing predicate viability across domains.

In summary, UNNS reframes foundational questions by replacing appeals
to unknowability with structural analysis. Predicate applicability becomes
a property of recursive structure under collapse, not a matter of epistemic
reach.

A Formal Proofs

This appendix provides formal justification for the structural claims used in
the main text. The proofs are not intended to establish numerical bounds,
but to demonstrate failure of predicate admissibility under the UNNS regime
criteria.

A.1 Failure of Primality Admissibility for TREE(3)

[Primality Non-Viability for TREE(3)] The predicate of primality is not
admissible for TREE(3) within the UNNS framework.

Proof. By construction, TREE(3) is generated by a finite combinatorial rule
and is therefore admissible at the ®-regime.

Assume, for contradiction, that the primality predicate is admissible for
TREE(3). Then there must exist a 7-level invariant encoding divisor inter-
action that persists under admissible projection.

Such an invariant would presuppose the existence of a W-stable reduction
preserving multiplicative structure, i.e. a terminating relational decomposi-
tion that stabilizes under iteration and is preserved under projection.

However, any divisor-based reduction for TREE(3) requires interaction
with structure at a scale proportional to TREE(3) itself. No terminating
reduction preserving divisor structure stabilizes under iteration, nor does
any admissible projection retain information sufficient to reconstruct divisor
interaction.

Thus, TREE(3) fails to admit ¥-stable reduction and consequently fails
to admit 7-closure. This contradicts the assumed admissibility of the pri-
mality predicate.

Therefore, primality is not admissible for TREE(3). O
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A.2 Monotonicity of Regime Failure

[Operator Monotonicity| Let X be a recursive structure. If X fails admissibil-
ity at some regime R € {®, ¥, 7}, then X fails admissibility at all subsequent
regimes.

Proof. By definition, W-admissibility presupposes ®-admissibility, and 7-
admissibility presupposes W-admissibility. Failure at regime R eliminates the
structural prerequisites required for admissibility at any subsequent regime.

O]

These results justify the localization of predicate failure to the earliest
regime at which structural admissibility collapses.
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